Imported from ../bash-1.14.7.tar.gz.

This commit is contained in:
Jari Aalto 1996-08-26 18:22:31 +00:00
commit 726f63884d
402 changed files with 150297 additions and 0 deletions

28
lib/malloc/Makefile Normal file
View file

@ -0,0 +1,28 @@
# Skeleton Makefile for the GNU malloc code
#
# Maybe this should really create a library instead of just compiling
# source files
srcdir = .
VPATH = .:$(srcdir)
.c.o:
$(CC) $(CFLAGS) $(CPPFLAGS) -c $<
.s.o:
$(CC) $(CFLAGS) $(CPPFLAGS) -c $<
MALLOC_SOURCE = malloc.c
ALLOCA_SOURCE = alloca.c
ALLOCA_OBJECT = alloca.o
malloc.o: malloc.c getpagesize.h
$(ALLOCA_OBJECT): $(ALLOCA_SOURCE)
alloca.o: $(ALLOCA_SOURCE)
$(CC) $(CFLAGS) $(CPPFLAGS) -c $<
@- if [ "$(ALLOCA_OBJECT)" != alloca.o ]; then \
mv $(ALLOCA_OBJECT) alloca.o >/dev/null 2>&1 ; \
fi

480
lib/malloc/alloca.c Normal file
View file

@ -0,0 +1,480 @@
/* alloca.c -- allocate automatically reclaimed memory
(Mostly) portable public-domain implementation -- D A Gwyn
This implementation of the PWB library alloca function,
which is used to allocate space off the run-time stack so
that it is automatically reclaimed upon procedure exit,
was inspired by discussions with J. Q. Johnson of Cornell.
J.Otto Tennant <jot@cray.com> contributed the Cray support.
There are some preprocessor constants that can
be defined when compiling for your specific system, for
improved efficiency; however, the defaults should be okay.
The general concept of this implementation is to keep
track of all alloca-allocated blocks, and reclaim any
that are found to be deeper in the stack than the current
invocation. This heuristic does not reclaim storage as
soon as it becomes invalid, but it will do so eventually.
As a special case, alloca(0) reclaims storage without
allocating any. It is a good idea to use alloca(0) in
your main control loop, etc. to force garbage collection. */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
/* If compiling with GCC 2, this file's not needed. */
#if !defined (__GNUC__) || __GNUC__ < 2
/* If alloca is defined somewhere, this file is not needed. */
#ifndef alloca
#ifdef emacs
#ifdef static
/* actually, only want this if static is defined as ""
-- this is for usg, in which emacs must undefine static
in order to make unexec workable
*/
#ifndef STACK_DIRECTION
you
lose
-- must know STACK_DIRECTION at compile-time
#endif /* STACK_DIRECTION undefined */
#endif /* static */
#endif /* emacs */
/* If your stack is a linked list of frames, you have to
provide an "address metric" ADDRESS_FUNCTION macro. */
#if defined (CRAY) && defined (CRAY_STACKSEG_END)
long i00afunc ();
#define ADDRESS_FUNCTION(arg) (char *) i00afunc (&(arg))
#else
#define ADDRESS_FUNCTION(arg) &(arg)
#endif /* CRAY && CRAY_STACKSEG_END */
#if __STDC__
typedef void *pointer;
#else
typedef char *pointer;
#endif
#define NULL 0
/* Different portions of Emacs need to call different versions of
malloc. The Emacs executable needs alloca to call xmalloc, because
ordinary malloc isn't protected from input signals. On the other
hand, the utilities in lib-src need alloca to call malloc; some of
them are very simple, and don't have an xmalloc routine.
Non-Emacs programs expect this to call use xmalloc.
Callers below should use malloc. */
#ifndef emacs
#define malloc xmalloc
extern pointer xmalloc ();
#endif
/* Define STACK_DIRECTION if you know the direction of stack
growth for your system; otherwise it will be automatically
deduced at run-time.
STACK_DIRECTION > 0 => grows toward higher addresses
STACK_DIRECTION < 0 => grows toward lower addresses
STACK_DIRECTION = 0 => direction of growth unknown */
#ifndef STACK_DIRECTION
#define STACK_DIRECTION 0 /* Direction unknown. */
#endif
#if STACK_DIRECTION != 0
#define STACK_DIR STACK_DIRECTION /* Known at compile-time. */
#else /* STACK_DIRECTION == 0; need run-time code. */
static int stack_dir; /* 1 or -1 once known. */
#define STACK_DIR stack_dir
static void
find_stack_direction ()
{
static char *addr = NULL; /* Address of first `dummy', once known. */
auto char dummy; /* To get stack address. */
if (addr == NULL)
{ /* Initial entry. */
addr = ADDRESS_FUNCTION (dummy);
find_stack_direction (); /* Recurse once. */
}
else
{
/* Second entry. */
if (ADDRESS_FUNCTION (dummy) > addr)
stack_dir = 1; /* Stack grew upward. */
else
stack_dir = -1; /* Stack grew downward. */
}
}
#endif /* STACK_DIRECTION == 0 */
/* An "alloca header" is used to:
(a) chain together all alloca'ed blocks;
(b) keep track of stack depth.
It is very important that sizeof(header) agree with malloc
alignment chunk size. The following default should work okay. */
#ifndef ALIGN_SIZE
#define ALIGN_SIZE sizeof(double)
#endif
typedef union hdr
{
char align[ALIGN_SIZE]; /* To force sizeof(header). */
struct
{
union hdr *next; /* For chaining headers. */
char *deep; /* For stack depth measure. */
} h;
} header;
static header *last_alloca_header = NULL; /* -> last alloca header. */
/* Return a pointer to at least SIZE bytes of storage,
which will be automatically reclaimed upon exit from
the procedure that called alloca. Originally, this space
was supposed to be taken from the current stack frame of the
caller, but that method cannot be made to work for some
implementations of C, for example under Gould's UTX/32. */
pointer
alloca (size)
unsigned size;
{
auto char probe; /* Probes stack depth: */
register char *depth = ADDRESS_FUNCTION (probe);
#if STACK_DIRECTION == 0
if (STACK_DIR == 0) /* Unknown growth direction. */
find_stack_direction ();
#endif
/* Reclaim garbage, defined as all alloca'd storage that
was allocated from deeper in the stack than currently. */
{
register header *hp; /* Traverses linked list. */
for (hp = last_alloca_header; hp != NULL;)
if ((STACK_DIR > 0 && hp->h.deep > depth)
|| (STACK_DIR < 0 && hp->h.deep < depth))
{
register header *np = hp->h.next;
free ((pointer) hp); /* Collect garbage. */
hp = np; /* -> next header. */
}
else
break; /* Rest are not deeper. */
last_alloca_header = hp; /* -> last valid storage. */
}
if (size == 0)
return NULL; /* No allocation required. */
/* Allocate combined header + user data storage. */
{
register pointer new = malloc (sizeof (header) + size);
/* Address of header. */
((header *) new)->h.next = last_alloca_header;
((header *) new)->h.deep = depth;
last_alloca_header = (header *) new;
/* User storage begins just after header. */
return (pointer) ((char *) new + sizeof (header));
}
}
#if defined (CRAY) && defined (CRAY_STACKSEG_END)
#ifdef DEBUG_I00AFUNC
#include <stdio.h>
#endif
#ifndef CRAY_STACK
#define CRAY_STACK
#ifndef CRAY2
/* Stack structures for CRAY-1, CRAY X-MP, and CRAY Y-MP */
struct stack_control_header
{
long shgrow:32; /* Number of times stack has grown. */
long shaseg:32; /* Size of increments to stack. */
long shhwm:32; /* High water mark of stack. */
long shsize:32; /* Current size of stack (all segments). */
};
/* The stack segment linkage control information occurs at
the high-address end of a stack segment. (The stack
grows from low addresses to high addresses.) The initial
part of the stack segment linkage control information is
0200 (octal) words. This provides for register storage
for the routine which overflows the stack. */
struct stack_segment_linkage
{
long ss[0200]; /* 0200 overflow words. */
long sssize:32; /* Number of words in this segment. */
long ssbase:32; /* Offset to stack base. */
long:32;
long sspseg:32; /* Offset to linkage control of previous
segment of stack. */
long:32;
long sstcpt:32; /* Pointer to task common address block. */
long sscsnm; /* Private control structure number for
microtasking. */
long ssusr1; /* Reserved for user. */
long ssusr2; /* Reserved for user. */
long sstpid; /* Process ID for pid based multi-tasking. */
long ssgvup; /* Pointer to multitasking thread giveup. */
long sscray[7]; /* Reserved for Cray Research. */
long ssa0;
long ssa1;
long ssa2;
long ssa3;
long ssa4;
long ssa5;
long ssa6;
long ssa7;
long sss0;
long sss1;
long sss2;
long sss3;
long sss4;
long sss5;
long sss6;
long sss7;
};
#else /* CRAY2 */
/* The following structure defines the vector of words
returned by the STKSTAT library routine. */
struct stk_stat
{
long now; /* Current total stack size. */
long maxc; /* Amount of contiguous space which would
be required to satisfy the maximum
stack demand to date. */
long high_water; /* Stack high-water mark. */
long overflows; /* Number of stack overflow ($STKOFEN) calls. */
long hits; /* Number of internal buffer hits. */
long extends; /* Number of block extensions. */
long stko_mallocs; /* Block allocations by $STKOFEN. */
long underflows; /* Number of stack underflow calls ($STKRETN). */
long stko_free; /* Number of deallocations by $STKRETN. */
long stkm_free; /* Number of deallocations by $STKMRET. */
long segments; /* Current number of stack segments. */
long maxs; /* Maximum number of stack segments so far. */
long pad_size; /* Stack pad size. */
long current_address; /* Current stack segment address. */
long current_size; /* Current stack segment size. This
number is actually corrupted by STKSTAT to
include the fifteen word trailer area. */
long initial_address; /* Address of initial segment. */
long initial_size; /* Size of initial segment. */
};
/* The following structure describes the data structure which trails
any stack segment. I think that the description in 'asdef' is
out of date. I only describe the parts that I am sure about. */
struct stk_trailer
{
long this_address; /* Address of this block. */
long this_size; /* Size of this block (does not include
this trailer). */
long unknown2;
long unknown3;
long link; /* Address of trailer block of previous
segment. */
long unknown5;
long unknown6;
long unknown7;
long unknown8;
long unknown9;
long unknown10;
long unknown11;
long unknown12;
long unknown13;
long unknown14;
};
#endif /* CRAY2 */
#endif /* not CRAY_STACK */
#ifdef CRAY2
/* Determine a "stack measure" for an arbitrary ADDRESS.
I doubt that "lint" will like this much. */
static long
i00afunc (long *address)
{
struct stk_stat status;
struct stk_trailer *trailer;
long *block, size;
long result = 0;
/* We want to iterate through all of the segments. The first
step is to get the stack status structure. We could do this
more quickly and more directly, perhaps, by referencing the
$LM00 common block, but I know that this works. */
STKSTAT (&status);
/* Set up the iteration. */
trailer = (struct stk_trailer *) (status.current_address
+ status.current_size
- 15);
/* There must be at least one stack segment. Therefore it is
a fatal error if "trailer" is null. */
if (trailer == 0)
abort ();
/* Discard segments that do not contain our argument address. */
while (trailer != 0)
{
block = (long *) trailer->this_address;
size = trailer->this_size;
if (block == 0 || size == 0)
abort ();
trailer = (struct stk_trailer *) trailer->link;
if ((block <= address) && (address < (block + size)))
break;
}
/* Set the result to the offset in this segment and add the sizes
of all predecessor segments. */
result = address - block;
if (trailer == 0)
{
return result;
}
do
{
if (trailer->this_size <= 0)
abort ();
result += trailer->this_size;
trailer = (struct stk_trailer *) trailer->link;
}
while (trailer != 0);
/* We are done. Note that if you present a bogus address (one
not in any segment), you will get a different number back, formed
from subtracting the address of the first block. This is probably
not what you want. */
return (result);
}
#else /* not CRAY2 */
/* Stack address function for a CRAY-1, CRAY X-MP, or CRAY Y-MP.
Determine the number of the cell within the stack,
given the address of the cell. The purpose of this
routine is to linearize, in some sense, stack addresses
for alloca. */
static long
i00afunc (long address)
{
long stkl = 0;
long size, pseg, this_segment, stack;
long result = 0;
struct stack_segment_linkage *ssptr;
/* Register B67 contains the address of the end of the
current stack segment. If you (as a subprogram) store
your registers on the stack and find that you are past
the contents of B67, you have overflowed the segment.
B67 also points to the stack segment linkage control
area, which is what we are really interested in. */
/* This might be _getb67() or GETB67 () or getb67 () */
stkl = CRAY_STACKSEG_END ();
ssptr = (struct stack_segment_linkage *) stkl;
/* If one subtracts 'size' from the end of the segment,
one has the address of the first word of the segment.
If this is not the first segment, 'pseg' will be
nonzero. */
pseg = ssptr->sspseg;
size = ssptr->sssize;
this_segment = stkl - size;
/* It is possible that calling this routine itself caused
a stack overflow. Discard stack segments which do not
contain the target address. */
while (!(this_segment <= address && address <= stkl))
{
#ifdef DEBUG_I00AFUNC
fprintf (stderr, "%011o %011o %011o\n", this_segment, address, stkl);
#endif
if (pseg == 0)
break;
stkl = stkl - pseg;
ssptr = (struct stack_segment_linkage *) stkl;
size = ssptr->sssize;
pseg = ssptr->sspseg;
this_segment = stkl - size;
}
result = address - this_segment;
/* If you subtract pseg from the current end of the stack,
you get the address of the previous stack segment's end.
This seems a little convoluted to me, but I'll bet you save
a cycle somewhere. */
while (pseg != 0)
{
#ifdef DEBUG_I00AFUNC
fprintf (stderr, "%011o %011o\n", pseg, size);
#endif
stkl = stkl - pseg;
ssptr = (struct stack_segment_linkage *) stkl;
size = ssptr->sssize;
pseg = ssptr->sspseg;
result += size;
}
return (result);
}
#endif /* not CRAY2 */
#endif /* CRAY && CRAY_STACKSEG_END */
#endif /* no alloca */
#endif /* !__GNUC__ || __GNUC__ < 2 */

49
lib/malloc/getpagesize.h Normal file
View file

@ -0,0 +1,49 @@
/* Emulation of getpagesize() for systems that need it.
Copyright (C) 1991 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#if defined (HAVE_UNISTD_H)
# include <unistd.h>
# if defined (_SC_PAGESIZE)
# define getpagesize() sysconf(_SC_PAGESIZE)
# endif /* _SC_PAGESIZE */
#endif
#if !defined (getpagesize)
# include <sys/param.h>
# if defined (PAGESIZE)
# define getpagesize() PAGESIZE
# else /* !PAGESIZE */
# if defined (EXEC_PAGESIZE)
# define getpagesize() EXEC_PAGESIZE
# else /* !EXEC_PAGESIZE */
# if defined (NBPG)
# if !defined (CLSIZE)
# define CLSIZE 1
# endif /* !CLSIZE */
# define getpagesize() (NBPG * CLSIZE)
# else /* !NBPG */
# if defined (NBPC)
# define getpagesize() NBPC
# endif /* NBPC */
# endif /* !NBPG */
# endif /* !EXEC_PAGESIZE */
# endif /* !PAGESIZE */
#endif /* !getpagesize */
#if !defined (getpagesize)
# define getpagesize() 4096 /* Just punt and use reasonable value */
#endif

16
lib/malloc/i386-alloca.s Normal file
View file

@ -0,0 +1,16 @@
.file "alloca.s"
.text
.align 4
.def alloca; .val alloca; .scl 2; .type 044; .endef
.globl alloca
alloca:
popl %edx
popl %eax
addl $3,%eax
andl $0xfffffffc,%eax
subl %eax,%esp
movl %esp,%eax
pushl %eax
pushl %edx
ret
.def alloca; .val .; .scl -1; .endef

668
lib/malloc/malloc.c Normal file
View file

@ -0,0 +1,668 @@
/* dynamic memory allocation for GNU. */
/* Copyright (C) 1985, 1987 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
In other words, you are welcome to use, share and improve this program.
You are forbidden to forbid anyone else to use, share and improve
what you give them. Help stamp out software-hoarding! */
/*
* @(#)nmalloc.c 1 (Caltech) 2/21/82
*
* U of M Modified: 20 Jun 1983 ACT: strange hacks for Emacs
*
* Nov 1983, Mike@BRL, Added support for 4.1C/4.2 BSD.
*
* This is a very fast storage allocator. It allocates blocks of a small
* number of different sizes, and keeps free lists of each size. Blocks
* that don't exactly fit are passed up to the next larger size. In this
* implementation, the available sizes are (2^n)-4 (or -16) bytes long.
* This is designed for use in a program that uses vast quantities of
* memory, but bombs when it runs out. To make it a little better, it
* warns the user when he starts to get near the end.
*
* June 84, ACT: modified rcheck code to check the range given to malloc,
* rather than the range determined by the 2-power used.
*
* Jan 85, RMS: calls malloc_warning to issue warning on nearly full.
* No longer Emacs-specific; can serve as all-purpose malloc for GNU.
* You should call malloc_init to reinitialize after loading dumped Emacs.
* Call malloc_stats to get info on memory stats if MSTATS turned on.
* realloc knows how to return same block given, just changing its size,
* if the power of 2 is correct.
*/
/*
* nextf[i] is the pointer to the next free block of size 2^(i+3). The
* smallest allocatable block is 8 bytes. The overhead information will
* go in the first int of the block, and the returned pointer will point
* to the second.
*
#ifdef MSTATS
* nmalloc[i] is the difference between the number of mallocs and frees
* for a given block size.
#endif
*/
#if defined (emacs) || defined (HAVE_CONFIG_H)
# include "config.h"
#endif /* emacs */
#if !defined (USG)
# if defined (HPUX) || defined (UnixPC) || defined (Xenix)
# define USG
# endif /* HPUX || UnixPC || Xenix */
#endif /* !USG */
/* Determine which kind of system this is. */
#include <sys/types.h>
#include <signal.h>
#if !defined (USG) && !defined (USGr4)
# ifndef SIGTSTP
# ifndef USG
# define USG
# endif /* !USG */
# else /* SIGTSTP */
# ifdef SIGIO
# define BSD4_2
# endif /* SIGIO */
# endif /* SIGTSTP */
#endif /* !USG && !USGr4 */
#ifndef BSD4_2
/* Define getpagesize () if the system does not. */
# include "getpagesize.h"
#endif
#if defined (HAVE_RESOURCE)
# include <sys/time.h>
# include <sys/resource.h>
#endif /* HAVE_RESOURCE */
/* Check for the needed symbols. If they aren't present, this
system's <sys/resource.h> isn't very useful to us. */
#if !defined (RLIMIT_DATA)
# undef HAVE_RESOURCE
#endif
#define start_of_data() &etext
#define ISALLOC ((char) 0xf7) /* magic byte that implies allocation */
#define ISFREE ((char) 0x54) /* magic byte that implies free block */
/* this is for error checking only */
#define ISMEMALIGN ((char) 0xd6) /* Stored before the value returned by
memalign, with the rest of the word
being the distance to the true
beginning of the block. */
extern char etext;
#if !defined (NO_SBRK_DECL)
extern char *sbrk ();
#endif /* !NO_SBRK_DECL */
/* These two are for user programs to look at, when they are interested. */
unsigned int malloc_sbrk_used; /* amount of data space used now */
unsigned int malloc_sbrk_unused; /* amount more we can have */
/* start of data space; can be changed by calling init_malloc */
static char *data_space_start;
static void get_lim_data ();
#ifdef MSTATS
static int nmalloc[30];
static int nmal, nfre;
#endif /* MSTATS */
/* If range checking is not turned on, all we have is a flag indicating
whether memory is allocated, an index in nextf[], and a size field; to
realloc() memory we copy either size bytes or 1<<(index+3) bytes depending
on whether the former can hold the exact size (given the value of
'index'). If range checking is on, we always need to know how much space
is allocated, so the 'size' field is never used. */
struct mhead {
char mh_alloc; /* ISALLOC or ISFREE */
char mh_index; /* index in nextf[] */
/* Remainder are valid only when block is allocated */
unsigned short mh_size; /* size, if < 0x10000 */
#ifdef rcheck
unsigned mh_nbytes; /* number of bytes allocated */
int mh_magic4; /* should be == MAGIC4 */
#endif /* rcheck */
};
/* Access free-list pointer of a block.
It is stored at block + 4.
This is not a field in the mhead structure
because we want sizeof (struct mhead)
to describe the overhead for when the block is in use,
and we do not want the free-list pointer to count in that. */
#define CHAIN(a) \
(*(struct mhead **) (sizeof (char *) + (char *) (a)))
#ifdef rcheck
# include <stdio.h>
# if !defined (botch)
# define botch(x) abort ()
# endif /* botch */
# if !defined (__STRING)
# if defined (__STDC__)
# define __STRING(x) #x
# else
# define __STRING(x) "x"
# endif
# endif
/* To implement range checking, we write magic values in at the beginning
and end of each allocated block, and make sure they are undisturbed
whenever a free or a realloc occurs. */
/* Written in each of the 4 bytes following the block's real space */
# define MAGIC1 0x55
/* Written in the 4 bytes before the block's real space */
# define MAGIC4 0x55555555
# define ASSERT(p) if (!(p)) botch(__STRING(p)); else
# define EXTRA 4 /* 4 bytes extra for MAGIC1s */
#else /* !rcheck */
# define ASSERT(p)
# define EXTRA 0
#endif /* rcheck */
/* nextf[i] is free list of blocks of size 2**(i + 3) */
static struct mhead *nextf[30];
/* busy[i] is nonzero while allocation of block size i is in progress. */
static char busy[30];
/* Number of bytes of writable memory we can expect to be able to get */
static unsigned int lim_data;
/* Level number of warnings already issued.
0 -- no warnings issued.
1 -- 75% warning already issued.
2 -- 85% warning already issued.
*/
static int warnlevel;
/* Function to call to issue a warning;
0 means don't issue them. */
static void (*warnfunction) ();
/* nonzero once initial bunch of free blocks made */
static int gotpool;
char *_malloc_base;
static void getpool ();
/* Cause reinitialization based on job parameters;
also declare where the end of pure storage is. */
void
malloc_init (start, warnfun)
char *start;
void (*warnfun) ();
{
if (start)
data_space_start = start;
lim_data = 0;
warnlevel = 0;
warnfunction = warnfun;
}
/* Return the maximum size to which MEM can be realloc'd
without actually requiring copying. */
int
malloc_usable_size (mem)
char *mem;
{
int blocksize = 8 << (((struct mhead *) mem) - 1) -> mh_index;
return blocksize - sizeof (struct mhead) - EXTRA;
}
static void
morecore (nu) /* ask system for more memory */
register int nu; /* size index to get more of */
{
register char *cp;
register int nblks;
register unsigned int siz;
int oldmask;
#if defined (BSD4_2)
oldmask = sigsetmask (-1);
#endif /* BSD4_2 */
if (!data_space_start)
{
data_space_start = start_of_data ();
}
if (lim_data == 0)
get_lim_data ();
/* On initial startup, get two blocks of each size up to 1k bytes */
if (!gotpool)
{ getpool (); getpool (); gotpool = 1; }
/* Find current end of memory and issue warning if getting near max */
cp = sbrk (0);
siz = cp - data_space_start;
malloc_sbrk_used = siz;
malloc_sbrk_unused = lim_data - siz;
if (warnfunction)
switch (warnlevel)
{
case 0:
if (siz > (lim_data / 4) * 3)
{
warnlevel++;
(*warnfunction) ("Warning: past 75% of memory limit");
}
break;
case 1:
if (siz > (lim_data / 20) * 17)
{
warnlevel++;
(*warnfunction) ("Warning: past 85% of memory limit");
}
break;
case 2:
if (siz > (lim_data / 20) * 19)
{
warnlevel++;
(*warnfunction) ("Warning: past 95% of memory limit");
}
break;
}
if ((int) cp & 0x3ff) /* land on 1K boundaries */
sbrk (1024 - ((int) cp & 0x3ff));
/* Take at least 2k, and figure out how many blocks of the desired size
we're about to get */
nblks = 1;
if ((siz = nu) < 8)
nblks = 1 << ((siz = 8) - nu);
if ((cp = sbrk (1 << (siz + 3))) == (char *) -1)
return; /* no more room! */
if ((int) cp & 7)
{ /* shouldn't happen, but just in case */
cp = (char *) (((int) cp + 8) & ~7);
nblks--;
}
/* save new header and link the nblks blocks together */
nextf[nu] = (struct mhead *) cp;
siz = 1 << (nu + 3);
while (1)
{
((struct mhead *) cp) -> mh_alloc = ISFREE;
((struct mhead *) cp) -> mh_index = nu;
if (--nblks <= 0) break;
CHAIN ((struct mhead *) cp) = (struct mhead *) (cp + siz);
cp += siz;
}
CHAIN ((struct mhead *) cp) = 0;
#if defined (BSD4_2)
sigsetmask (oldmask);
#endif /* BSD4_2 */
}
static void
getpool ()
{
register int nu;
register char *cp = sbrk (0);
if ((int) cp & 0x3ff) /* land on 1K boundaries */
sbrk (1024 - ((int) cp & 0x3ff));
/* Record address of start of space allocated by malloc. */
if (_malloc_base == 0)
_malloc_base = cp;
/* Get 2k of storage */
cp = sbrk (04000);
if (cp == (char *) -1)
return;
/* Divide it into an initial 8-word block
plus one block of size 2**nu for nu = 3 ... 10. */
CHAIN (cp) = nextf[0];
nextf[0] = (struct mhead *) cp;
((struct mhead *) cp) -> mh_alloc = ISFREE;
((struct mhead *) cp) -> mh_index = 0;
cp += 8;
for (nu = 0; nu < 7; nu++)
{
CHAIN (cp) = nextf[nu];
nextf[nu] = (struct mhead *) cp;
((struct mhead *) cp) -> mh_alloc = ISFREE;
((struct mhead *) cp) -> mh_index = nu;
cp += 8 << nu;
}
}
char *
malloc (n) /* get a block */
unsigned n;
{
register struct mhead *p;
register unsigned int nbytes;
register int nunits = 0;
/* Figure out how many bytes are required, rounding up to the nearest
multiple of 4, then figure out which nextf[] area to use */
nbytes = (n + sizeof *p + EXTRA + 3) & ~3;
{
register unsigned int shiftr = (nbytes - 1) >> 2;
while (shiftr >>= 1)
nunits++;
}
/* In case this is reentrant use of malloc from signal handler,
pick a block size that no other malloc level is currently
trying to allocate. That's the easiest harmless way not to
interfere with the other level of execution. */
while (busy[nunits]) nunits++;
busy[nunits] = 1;
/* If there are no blocks of the appropriate size, go get some */
/* COULD SPLIT UP A LARGER BLOCK HERE ... ACT */
if (nextf[nunits] == 0)
morecore (nunits);
/* Get one block off the list, and set the new list head */
if ((p = nextf[nunits]) == 0)
{
busy[nunits] = 0;
return 0;
}
nextf[nunits] = CHAIN (p);
busy[nunits] = 0;
/* Check for free block clobbered */
/* If not for this check, we would gobble a clobbered free chain ptr */
/* and bomb out on the NEXT allocate of this size block */
if (p -> mh_alloc != ISFREE || p -> mh_index != nunits)
#ifdef rcheck
botch ("block on free list clobbered");
#else /* not rcheck */
abort ();
#endif /* not rcheck */
/* Fill in the info, and if range checking, set up the magic numbers */
p -> mh_alloc = ISALLOC;
#ifdef rcheck
p -> mh_nbytes = n;
p -> mh_magic4 = MAGIC4;
{
register char *m = (char *) (p + 1) + n;
*m++ = MAGIC1, *m++ = MAGIC1, *m++ = MAGIC1, *m = MAGIC1;
}
#else /* not rcheck */
p -> mh_size = n;
#endif /* not rcheck */
#ifdef MSTATS
nmalloc[nunits]++;
nmal++;
#endif /* MSTATS */
return (char *) (p + 1);
}
void
free (mem)
char *mem;
{
register struct mhead *p;
{
register char *ap = mem;
if (ap == 0)
return;
p = (struct mhead *) ap - 1;
if (p -> mh_alloc == ISMEMALIGN)
{
#ifdef rcheck
ap -= p->mh_nbytes;
#endif
p = (struct mhead *) ap - 1;
}
#ifndef rcheck
if (p -> mh_alloc != ISALLOC)
abort ();
#else /* rcheck */
if (p -> mh_alloc != ISALLOC)
{
if (p -> mh_alloc == ISFREE)
botch ("free: Called with already freed block argument\n");
else
botch ("free: Called with bad argument\n");
}
ASSERT (p -> mh_magic4 == MAGIC4);
ap += p -> mh_nbytes;
ASSERT (*ap++ == MAGIC1); ASSERT (*ap++ == MAGIC1);
ASSERT (*ap++ == MAGIC1); ASSERT (*ap == MAGIC1);
#endif /* rcheck */
}
{
register int nunits = p -> mh_index;
ASSERT (nunits <= 29);
p -> mh_alloc = ISFREE;
/* Protect against signal handlers calling malloc. */
busy[nunits] = 1;
/* Put this block on the free list. */
CHAIN (p) = nextf[nunits];
nextf[nunits] = p;
busy[nunits] = 0;
#ifdef MSTATS
nmalloc[nunits]--;
nfre++;
#endif /* MSTATS */
}
}
char *
realloc (mem, n)
char *mem;
register unsigned n;
{
register struct mhead *p;
register unsigned int tocopy;
register unsigned int nbytes;
register int nunits;
if ((p = (struct mhead *) mem) == 0)
return malloc (n);
p--;
nunits = p -> mh_index;
ASSERT (p -> mh_alloc == ISALLOC);
#ifdef rcheck
ASSERT (p -> mh_magic4 == MAGIC4);
{
register char *m = mem + (tocopy = p -> mh_nbytes);
ASSERT (*m++ == MAGIC1); ASSERT (*m++ == MAGIC1);
ASSERT (*m++ == MAGIC1); ASSERT (*m == MAGIC1);
}
#else /* not rcheck */
if (p -> mh_index >= 13)
tocopy = (1 << (p -> mh_index + 3)) - sizeof *p;
else
tocopy = p -> mh_size;
#endif /* not rcheck */
/* See if desired size rounds to same power of 2 as actual size. */
nbytes = (n + sizeof *p + EXTRA + 7) & ~7;
/* If ok, use the same block, just marking its size as changed. */
if (nbytes > (4 << nunits) && nbytes <= (8 << nunits))
{
#ifdef rcheck
register char *m = mem + tocopy;
*m++ = 0; *m++ = 0; *m++ = 0; *m++ = 0;
p-> mh_nbytes = n;
m = mem + n;
*m++ = MAGIC1; *m++ = MAGIC1; *m++ = MAGIC1; *m++ = MAGIC1;
#else /* not rcheck */
p -> mh_size = n;
#endif /* not rcheck */
return mem;
}
if (n < tocopy)
tocopy = n;
{
register char *new;
if ((new = malloc (n)) == 0)
return 0;
bcopy (mem, new, tocopy);
free (mem);
return new;
}
}
char *
memalign (alignment, size)
unsigned alignment, size;
{
register char *ptr = malloc (size + alignment);
register char *aligned;
register struct mhead *p;
if (ptr == 0)
return 0;
/* If entire block has the desired alignment, just accept it. */
if (((int) ptr & (alignment - 1)) == 0)
return ptr;
/* Otherwise, get address of byte in the block that has that alignment. */
aligned = (char *) (((int) ptr + alignment - 1) & -alignment);
/* Store a suitable indication of how to free the block,
so that free can find the true beginning of it. */
p = (struct mhead *) aligned - 1;
p -> mh_size = aligned - ptr;
p -> mh_alloc = ISMEMALIGN;
return aligned;
}
#if !defined (HPUX) && !defined (Multimax) && !defined (Multimax32k)
/* This runs into trouble with getpagesize on HPUX, and Multimax machines.
Patching out seems cleaner than the ugly fix needed. */
char *
valloc (size)
{
return memalign (getpagesize (), size);
}
#endif /* !HPUX && !Multimax && !Multimax32k */
#ifdef MSTATS
/* Return statistics describing allocation of blocks of size 2**n. */
struct mstats_value
{
int blocksize;
int nfree;
int nused;
};
struct mstats_value
malloc_stats (size)
int size;
{
struct mstats_value v;
register int i;
register struct mhead *p;
v.nfree = 0;
if (size < 0 || size >= 30)
{
v.blocksize = 0;
v.nused = 0;
return v;
}
v.blocksize = 1 << (size + 3);
v.nused = nmalloc[size];
for (p = nextf[size]; p; p = CHAIN (p))
v.nfree++;
return v;
}
#endif /* MSTATS */
/*
* This function returns the total number of bytes that the process
* will be allowed to allocate via the sbrk(2) system call. On
* BSD systems this is the total space allocatable to stack and
* data. On USG systems this is the data space only.
*/
#if !defined (HAVE_RESOURCE)
extern long ulimit ();
static void
get_lim_data ()
{
lim_data = ulimit (3, 0);
lim_data -= (long) data_space_start;
}
#else /* HAVE_RESOURCE */
static void
get_lim_data ()
{
struct rlimit XXrlimit;
getrlimit (RLIMIT_DATA, &XXrlimit);
#ifdef RLIM_INFINITY
lim_data = XXrlimit.rlim_cur & RLIM_INFINITY; /* soft limit */
#else
lim_data = XXrlimit.rlim_cur; /* soft limit */
#endif
}
#endif /* HAVE_RESOURCE */

63
lib/malloc/x386-alloca.s Normal file
View file

@ -0,0 +1,63 @@
;; alloca386.s 1.2
;; GNU-compatible stack allocation function for Xenix/386.
;; Written by Chip Salzenberg at ComDev.
;; Last modified 90/01/11
;;> Is your alloca clearly better than the one in i386-alloca.s? I haven't
;;> looked at either.
;;
;;They're different because Xenix/386 has a different assembler. SCO
;;Xenix has the Microsoft C compiler and the Microsoft macro assembler,
;;called "masm". MASM's assembler syntax is quite different from AT&T's
;;in all sorts of ways. Xenix people can't use the AT&T version.
;;--
;;Chip Salzenberg at ComDev/TCT <chip@tct.uucp>, <uunet!ateng!tct!chip>
TITLE $alloca386
.386
DGROUP GROUP CONST, _BSS, _DATA
_DATA SEGMENT DWORD USE32 PUBLIC 'DATA'
_DATA ENDS
_BSS SEGMENT DWORD USE32 PUBLIC 'BSS'
_BSS ENDS
CONST SEGMENT DWORD USE32 PUBLIC 'CONST'
CONST ENDS
_TEXT SEGMENT DWORD USE32 PUBLIC 'CODE'
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP
PUBLIC _alloca
_alloca PROC NEAR
; Get argument.
pop edx ; edx -> return address
pop eax ; eax = amount to allocate
; Validate allocation amount.
add eax,3
and eax,not 3
cmp eax,0
jg aa_size_ok
mov eax,4
aa_size_ok:
; Allocate stack space.
mov ecx,esp ; ecx -> old stack pointer
sub esp,eax ; perform allocation
mov eax,esp ; eax -> new stack pointer
; Copy the three saved register variables from old stack top to new stack top.
; They may not be there. So we waste twelve bytes. Big fat hairy deal.
push DWORD PTR 8[ecx]
push DWORD PTR 4[ecx]
push DWORD PTR 0[ecx]
; Push something so the caller can pop it off.
push eax
; Return to caller.
jmp edx
_alloca ENDP
_TEXT ENDS
END

78
lib/malloc/xmalloc.c Normal file
View file

@ -0,0 +1,78 @@
/* xmalloc.c -- safe versions of malloc and realloc */
/* Copyright (C) 1991 Free Software Foundation, Inc.
This file is part of GNU Readline, a library for reading lines
of text with interactive input and history editing.
Readline is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 1, or (at your option) any
later version.
Readline is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Readline; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#if defined (ALREADY_HAVE_XMALLOC)
#else
#include <stdio.h>
#if defined (HAVE_STDLIB_H)
# include <stdlib.h>
#else
# include "ansi_stdlib.h"
#endif /* HAVE_STDLIB_H */
static void memory_error_and_abort ();
/* **************************************************************** */
/* */
/* Memory Allocation and Deallocation. */
/* */
/* **************************************************************** */
/* Return a pointer to free()able block of memory large enough
to hold BYTES number of bytes. If the memory cannot be allocated,
print an error message and abort. */
char *
xmalloc (bytes)
int bytes;
{
char *temp = (char *)malloc (bytes);
if (!temp)
memory_error_and_abort ("xmalloc");
return (temp);
}
char *
xrealloc (pointer, bytes)
char *pointer;
int bytes;
{
char *temp;
if (!pointer)
temp = (char *)malloc (bytes);
else
temp = (char *)realloc (pointer, bytes);
if (!temp)
memory_error_and_abort ("xrealloc");
return (temp);
}
static void
memory_error_and_abort (fname)
char *fname;
{
fprintf (stderr, "%s: Out of virtual memory!\n", fname);
abort ();
}
#endif /* !ALREADY_HAVE_XMALLOC */