* module/language/cps/cse.scm (elide-predecessor, prune-branch) (prune-successors, term-successors): New helpers. (eliminate-common-subexpressions-in-fun): When we modify the CFG, update the analysis. Also, thread the substs map through CSE so that closures in high-level CPS can take advantage of eliminated variables. (fold-renumbered-functions): Take multiple seeds. (eliminate-common-subexpressions): Thread var substs map through CSE.
493 lines
21 KiB
Scheme
493 lines
21 KiB
Scheme
;;; Continuation-passing style (CPS) intermediate language (IL)
|
|
|
|
;; Copyright (C) 2013-2020 Free Software Foundation, Inc.
|
|
|
|
;;;; This library is free software; you can redistribute it and/or
|
|
;;;; modify it under the terms of the GNU Lesser General Public
|
|
;;;; License as published by the Free Software Foundation; either
|
|
;;;; version 3 of the License, or (at your option) any later version.
|
|
;;;;
|
|
;;;; This library is distributed in the hope that it will be useful,
|
|
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
;;;; Lesser General Public License for more details.
|
|
;;;;
|
|
;;;; You should have received a copy of the GNU Lesser General Public
|
|
;;;; License along with this library; if not, write to the Free Software
|
|
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
;;; Commentary:
|
|
;;;
|
|
;;; Common subexpression elimination for CPS.
|
|
;;;
|
|
;;; Code:
|
|
|
|
(define-module (language cps cse)
|
|
#:use-module (ice-9 match)
|
|
#:use-module (srfi srfi-1)
|
|
#:use-module (srfi srfi-9)
|
|
#:use-module (srfi srfi-11)
|
|
#:use-module (language cps)
|
|
#:use-module (language cps utils)
|
|
#:use-module (language cps effects-analysis)
|
|
#:use-module (language cps intmap)
|
|
#:use-module (language cps intset)
|
|
#:use-module (language cps renumber)
|
|
#:export (eliminate-common-subexpressions))
|
|
|
|
(define (compute-available-expressions succs kfun clobbers)
|
|
"Compute and return a map of LABEL->ANCESTOR..., where ANCESTOR... is
|
|
an intset containing ancestor labels whose value is available at LABEL."
|
|
(let ((init (intmap-map (lambda (label succs) #f) succs))
|
|
(kill clobbers)
|
|
(gen (intmap-map (lambda (label succs) (intset label)) succs))
|
|
(subtract (lambda (in-1 kill-1)
|
|
(if in-1
|
|
(intset-subtract in-1 kill-1)
|
|
empty-intset)))
|
|
(add intset-union)
|
|
(meet (lambda (in-1 in-1*)
|
|
(if in-1
|
|
(intset-intersect in-1 in-1*)
|
|
in-1*))))
|
|
(let ((in (intmap-replace init kfun empty-intset))
|
|
(out init)
|
|
(worklist (intset kfun)))
|
|
(solve-flow-equations succs in out kill gen subtract add meet worklist))))
|
|
|
|
(define (intset-pop set)
|
|
(match (intset-next set)
|
|
(#f (values set #f))
|
|
(i (values (intset-remove set i) i))))
|
|
|
|
(define-syntax-rule (make-worklist-folder* seed ...)
|
|
(lambda (f worklist seed ...)
|
|
(let lp ((worklist worklist) (seed seed) ...)
|
|
(call-with-values (lambda () (intset-pop worklist))
|
|
(lambda (worklist i)
|
|
(if i
|
|
(call-with-values (lambda () (f i seed ...))
|
|
(lambda (i* seed ...)
|
|
(let add ((i* i*) (worklist worklist))
|
|
(match i*
|
|
(() (lp worklist seed ...))
|
|
((i . i*) (add i* (intset-add worklist i)))))))
|
|
(values seed ...)))))))
|
|
|
|
(define worklist-fold*
|
|
(case-lambda
|
|
((f worklist seed)
|
|
((make-worklist-folder* seed) f worklist seed))))
|
|
|
|
(define (compute-truthy-expressions conts kfun)
|
|
"Compute a \"truth map\", indicating which expressions can be shown to
|
|
be true and/or false at each label in the function starting at KFUN.
|
|
Returns an intmap of intsets. The even elements of the intset indicate
|
|
labels that may be true, and the odd ones indicate those that may be
|
|
false. It could be that both true and false proofs are available."
|
|
(define (true-idx label) (ash label 1))
|
|
(define (false-idx label) (1+ (ash label 1)))
|
|
|
|
(define (propagate boolv succ out)
|
|
(let* ((in (intmap-ref boolv succ (lambda (_) #f)))
|
|
(in* (if in (intset-union in out) out)))
|
|
(if (eq? in in*)
|
|
(values '() boolv)
|
|
(values (list succ)
|
|
(intmap-add boolv succ in* (lambda (old new) new))))))
|
|
|
|
(define (visit-cont label boolv)
|
|
(let ((in (intmap-ref boolv label)))
|
|
(define (propagate0)
|
|
(values '() boolv))
|
|
(define (propagate1 succ)
|
|
(propagate boolv succ in))
|
|
(define (propagate2 succ0 succ1)
|
|
(let*-values (((changed0 boolv) (propagate boolv succ0 in))
|
|
((changed1 boolv) (propagate boolv succ1 in)))
|
|
(values (append changed0 changed1) boolv)))
|
|
(define (propagate-branch succ0 succ1)
|
|
(let*-values (((changed0 boolv)
|
|
(propagate boolv succ0
|
|
(intset-add in (false-idx label))))
|
|
((changed1 boolv)
|
|
(propagate boolv succ1
|
|
(intset-add in (true-idx label)))))
|
|
(values (append changed0 changed1) boolv)))
|
|
|
|
(match (intmap-ref conts label)
|
|
(($ $kargs names vars term)
|
|
(match term
|
|
(($ $continue k) (propagate1 k))
|
|
(($ $branch kf kt) (propagate-branch kf kt))
|
|
(($ $prompt k kh) (propagate2 k kh))
|
|
(($ $throw) (propagate0))))
|
|
(($ $kreceive arity k)
|
|
(propagate1 k))
|
|
(($ $kfun src meta self tail clause)
|
|
(if clause
|
|
(propagate1 clause)
|
|
(propagate0)))
|
|
(($ $kclause arity kbody kalt)
|
|
(if kalt
|
|
(propagate2 kbody kalt)
|
|
(propagate1 kbody)))
|
|
(($ $ktail) (propagate0)))))
|
|
|
|
(worklist-fold* visit-cont
|
|
(intset kfun)
|
|
(intmap-add empty-intmap kfun empty-intset)))
|
|
|
|
(define-record-type <analysis>
|
|
(make-analysis effects clobbers preds avail truthy-labels)
|
|
analysis?
|
|
(effects analysis-effects)
|
|
(clobbers analysis-clobbers)
|
|
(preds analysis-preds)
|
|
(avail analysis-avail)
|
|
(truthy-labels analysis-truthy-labels))
|
|
|
|
;; When we determine that we can replace an expression with
|
|
;; already-bound variables, we change the expression to a $values. At
|
|
;; its continuation, if it turns out that the $values expression is the
|
|
;; only predecessor, we elide the predecessor, to make redundant branch
|
|
;; folding easier. Ideally, elision results in redundant branches
|
|
;; having multiple predecessors which already have values for the
|
|
;; branch.
|
|
;;
|
|
;; We could avoid elision, and instead search backwards when we get to a
|
|
;; branch that we'd like to elide. However it's gnarly: branch elisions
|
|
;; reconfigure the control-flow graph, and thus affect the avail /
|
|
;; truthy maps. If we forwarded such a distant predecessor, if there
|
|
;; were no intermediate definitions, we'd have to replay the flow
|
|
;; analysis from far away. Maybe it's possible but it's not obvious.
|
|
;;
|
|
;; The elision mechanism is to rewrite predecessors to continue to the
|
|
;; successor. We could have instead replaced the predecessor with the
|
|
;; body of the successor, but that would invalidate the values of the
|
|
;; avail / truthy maps, as well as the clobber sets.
|
|
;;
|
|
;; We can't always elide the predecessor though. If any of the
|
|
;; predecessor's predecessors is a back-edge, it hasn't been
|
|
;; residualized yet and so we can't rewrite it. This is an
|
|
;; implementation limitation.
|
|
;;
|
|
(define (elide-predecessor label pred out analysis)
|
|
(match analysis
|
|
(($ <analysis> effects clobbers preds avail truthy-labels)
|
|
(let ((pred-preds (intmap-ref preds pred)))
|
|
(and
|
|
;; Don't elide predecessors that are the targets of back-edges.
|
|
(< (intset-prev pred-preds) pred)
|
|
(cons
|
|
(intset-fold
|
|
(lambda (pred-pred out)
|
|
(define (rename k) (if (eqv? k pred) label k))
|
|
(intmap-replace!
|
|
out pred-pred
|
|
(rewrite-cont (intmap-ref out pred-pred)
|
|
(($ $kargs names vals ($ $continue k src exp))
|
|
($kargs names vals ($continue (rename k) src ,exp)))
|
|
(($ $kargs names vals ($ $branch kf kt src op param args))
|
|
($kargs names vals ($branch (rename kf) (rename kt) src op param args)))
|
|
(($ $kargs names vals ($ $prompt k kh src escape? tag))
|
|
($kargs names vals ($prompt (rename k) (rename kh) src escape? tag)))
|
|
(($ $kreceive ($ $arity req () rest () #f) kbody)
|
|
($kreceive req rest (rename kbody)))
|
|
(($ $kclause arity kbody kalternate)
|
|
;; Can only be a body continuation.
|
|
($kclause ,arity (rename kbody) kalternate)))))
|
|
pred-preds
|
|
(intmap-remove out pred))
|
|
(make-analysis effects
|
|
clobbers
|
|
(intmap-add (intmap-add preds label pred intset-remove)
|
|
label pred-preds intset-union)
|
|
avail
|
|
truthy-labels)))))))
|
|
|
|
(define (prune-branch analysis pred succ)
|
|
(match analysis
|
|
(($ <analysis> effects clobbers preds avail truthy-labels)
|
|
(make-analysis effects
|
|
clobbers
|
|
(intmap-add preds succ pred intset-remove)
|
|
avail
|
|
truthy-labels))))
|
|
|
|
(define (prune-successors analysis pred succs)
|
|
(intset-fold (lambda (succ analysis)
|
|
(prune-branch analysis pred succ))
|
|
succs analysis))
|
|
|
|
(define (term-successors term)
|
|
(match term
|
|
(($ $continue k) (intset k))
|
|
(($ $branch kf kt) (intset kf kt))
|
|
(($ $prompt k kh) (intset k kh))
|
|
(($ $throw) empty-intset)))
|
|
|
|
(define (eliminate-common-subexpressions-in-fun kfun conts out substs)
|
|
(define equiv-set (make-hash-table))
|
|
(define (true-idx idx) (ash idx 1))
|
|
(define (false-idx idx) (1+ (ash idx 1)))
|
|
(define (subst-var substs var)
|
|
(intmap-ref substs var (lambda (var) var)))
|
|
(define (subst-vars substs vars)
|
|
(let lp ((vars vars))
|
|
(match vars
|
|
(() '())
|
|
((var . vars) (cons (subst-var substs var) (lp vars))))))
|
|
|
|
(define (compute-term-key term)
|
|
(match term
|
|
(($ $continue k src exp)
|
|
(match exp
|
|
(($ $const val) (cons 'const val))
|
|
(($ $prim name) (cons 'prim name))
|
|
(($ $fun body) #f)
|
|
(($ $rec names syms funs) #f)
|
|
(($ $const-fun label) #f)
|
|
(($ $code label) (cons 'code label))
|
|
(($ $call proc args) #f)
|
|
(($ $callk k proc args) #f)
|
|
(($ $primcall name param args) (cons* name param args))
|
|
(($ $values args) #f)))
|
|
(($ $branch kf kt src op param args) (cons* op param args))
|
|
(($ $prompt) #f)
|
|
(($ $throw) #f)))
|
|
|
|
(define (add-auxiliary-definitions! label defs substs term-key)
|
|
(define (add-def! aux-key var)
|
|
(let ((equiv (hash-ref equiv-set aux-key '())))
|
|
(hash-set! equiv-set aux-key
|
|
(acons label (list var) equiv))))
|
|
(define-syntax add-definitions
|
|
(syntax-rules (<-)
|
|
((add-definitions)
|
|
#f)
|
|
((add-definitions
|
|
((def <- op arg ...) (aux <- op* arg* ...) ...)
|
|
. clauses)
|
|
(match term-key
|
|
(('op arg ...)
|
|
(match defs
|
|
(#f
|
|
;; If the successor is a control-flow join, don't
|
|
;; pretend to know the values of its defs.
|
|
#f)
|
|
((def) (add-def! (list 'op* arg* ...) aux) ...)))
|
|
(_ (add-definitions . clauses))))
|
|
((add-definitions
|
|
((op arg ...) (aux <- op* arg* ...) ...)
|
|
. clauses)
|
|
(match term-key
|
|
(('op arg ...)
|
|
(add-def! (list 'op* arg* ...) aux) ...)
|
|
(_ (add-definitions . clauses))))))
|
|
(add-definitions
|
|
((scm-set! p s i x) (x <- scm-ref p s i))
|
|
((scm-set!/tag p s x) (x <- scm-ref/tag p s))
|
|
((scm-set!/immediate p s x) (x <- scm-ref/immediate p s))
|
|
((word-set! p s i x) (x <- word-ref p s i))
|
|
((word-set!/immediate p s x) (x <- word-ref/immediate p s))
|
|
((pointer-set!/immediate p s x) (x <- pointer-ref/immediate p s))
|
|
|
|
((u <- scm->f64 #f s) (s <- f64->scm #f u))
|
|
((s <- f64->scm #f u) (u <- scm->f64 #f s))
|
|
((u <- scm->u64 #f s) (s <- u64->scm #f u))
|
|
((s <- u64->scm #f u) (u <- scm->u64 #f s)
|
|
(u <- scm->u64/truncate #f s))
|
|
((s <- u64->scm/unlikely #f u) (u <- scm->u64 #f s)
|
|
(u <- scm->u64/truncate #f s))
|
|
((u <- scm->s64 #f s) (s <- s64->scm #f u))
|
|
((s <- s64->scm #f u) (u <- scm->s64 #f s))
|
|
((s <- s64->scm/unlikely #f u) (u <- scm->s64 #f s))
|
|
((u <- untag-fixnum #f s) (s <- s64->scm #f u)
|
|
(s <- tag-fixnum #f u))
|
|
;; NB: These definitions rely on U having top 2 bits equal to
|
|
;; 3rd (sign) bit.
|
|
((s <- tag-fixnum #f u) (u <- scm->s64 #f s)
|
|
(u <- untag-fixnum #f s))
|
|
((s <- u64->s64 #f u) (u <- s64->u64 #f s))
|
|
((u <- s64->u64 #f s) (s <- u64->s64 #f u))
|
|
|
|
((u <- untag-char #f s) (s <- tag-char #f u))
|
|
((s <- tag-char #f u) (u <- untag-char #f s))))
|
|
|
|
(define (rename-uses term substs)
|
|
(define (subst-var var)
|
|
(intmap-ref substs var (lambda (var) var)))
|
|
(define (rename-exp exp)
|
|
(rewrite-exp exp
|
|
((or ($ $const) ($ $prim) ($ $fun) ($ $rec) ($ $const-fun) ($ $code))
|
|
,exp)
|
|
(($ $call proc args)
|
|
($call (subst-var proc) ,(map subst-var args)))
|
|
(($ $callk k proc args)
|
|
($callk k (and proc (subst-var proc)) ,(map subst-var args)))
|
|
(($ $primcall name param args)
|
|
($primcall name param ,(map subst-var args)))
|
|
(($ $values args)
|
|
($values ,(map subst-var args)))))
|
|
(rewrite-term term
|
|
(($ $branch kf kt src op param args)
|
|
($branch kf kt src op param ,(map subst-var args)))
|
|
(($ $continue k src exp)
|
|
($continue k src ,(rename-exp exp)))
|
|
(($ $prompt k kh src escape? tag)
|
|
($prompt k kh src escape? (subst-var tag)))
|
|
(($ $throw src op param args)
|
|
($throw src op param ,(map subst-var args)))))
|
|
|
|
(define (visit-term label term substs analysis)
|
|
(let* ((term (rename-uses term substs)))
|
|
(define (residualize)
|
|
(values term analysis))
|
|
(define (eliminate k src vals)
|
|
(values (build-term ($continue k src ($values vals))) analysis))
|
|
(define (fold-branch true? kf kt src)
|
|
(values (build-term ($continue (if true? kt kf) src ($values ())))
|
|
(prune-branch analysis label (if true? kf kt))))
|
|
|
|
(match (compute-term-key term)
|
|
(#f (residualize))
|
|
(term-key
|
|
(match analysis
|
|
(($ <analysis> effects clobbers preds avail truthy-labels)
|
|
(let ((avail (intmap-ref avail label)))
|
|
(let lp ((candidates (hash-ref equiv-set term-key '())))
|
|
(match candidates
|
|
(()
|
|
;; No available expression; residualize.
|
|
(residualize))
|
|
(((candidate . vars) . candidates)
|
|
(cond
|
|
((not (intset-ref avail candidate))
|
|
;; This expression isn't available here; try
|
|
;; the next one.
|
|
(lp candidates))
|
|
(else
|
|
(match term
|
|
(($ $continue k src)
|
|
;; Yay, a match; eliminate the expression.
|
|
(eliminate k src vars))
|
|
(($ $branch kf kt src)
|
|
(let* ((bool (intmap-ref truthy-labels label))
|
|
(t (intset-ref bool (true-idx candidate)))
|
|
(f (intset-ref bool (false-idx candidate))))
|
|
(if (eqv? t f)
|
|
;; Can't fold the branch; keep on
|
|
;; looking for another candidate.
|
|
(lp candidates)
|
|
;; Nice, the branch folded.
|
|
(fold-branch t kf kt src)))))))))))))))))
|
|
|
|
(define (visit-label label cont out substs analysis)
|
|
(match cont
|
|
(($ $kargs names vars term)
|
|
(define (visit-term* names vars out substs analysis)
|
|
(call-with-values (lambda ()
|
|
(visit-term label term substs analysis))
|
|
(lambda (term analysis)
|
|
(values (intmap-add! out label
|
|
(build-cont ($kargs names vars ,term)))
|
|
substs
|
|
analysis))))
|
|
(define (visit-term-normally)
|
|
(visit-term* names vars out substs analysis))
|
|
(match analysis
|
|
(($ <analysis> effects clobbers preds avail truthy-labels)
|
|
(let ((preds (intmap-ref preds label)))
|
|
(cond
|
|
((eq? preds empty-intset)
|
|
;; Branch folding made this term unreachable. Prune from
|
|
;; preds set.
|
|
(values out substs
|
|
(prune-successors analysis label (term-successors term))))
|
|
((trivial-intset preds)
|
|
=> (lambda (pred)
|
|
(match (intmap-ref out pred)
|
|
(($ $kargs names' vars' ($ $continue _ _ ($ $values vals)))
|
|
;; Substitute dominating definitions, and try to elide the
|
|
;; predecessor entirely.
|
|
(let ((substs (fold (lambda (var val substs)
|
|
(intmap-add substs var val))
|
|
substs vars vals)))
|
|
(match (elide-predecessor label pred out analysis)
|
|
(#f
|
|
;; Can't elide; predecessor must be target of
|
|
;; backwards branch.
|
|
(visit-term* names vars out substs analysis))
|
|
((out . analysis)
|
|
(visit-term* names' vars' out substs analysis)))))
|
|
(($ $kargs _ _ term)
|
|
(match (compute-term-key term)
|
|
(#f #f)
|
|
(term-key
|
|
(let ((fx (intmap-ref effects pred)))
|
|
;; Add residualized definition to the equivalence set.
|
|
;; Note that expressions that allocate a fresh object
|
|
;; or change the current fluid environment can't be
|
|
;; eliminated by CSE (though DCE might do it if the
|
|
;; value proves to be unused, in the allocation case).
|
|
(when (and (not (causes-effect? fx &allocation))
|
|
(not (effect-clobbers? fx (&read-object &fluid))))
|
|
(let ((equiv (hash-ref equiv-set term-key '())))
|
|
(hash-set! equiv-set term-key (acons pred vars equiv)))))
|
|
;; If the predecessor defines auxiliary definitions, as
|
|
;; `cons' does for the results of `car' and `cdr', define
|
|
;; those as well.
|
|
(add-auxiliary-definitions! pred vars substs term-key)))
|
|
(visit-term-normally))
|
|
(_
|
|
(visit-term-normally)))))
|
|
(else
|
|
(visit-term-normally)))))))
|
|
(_ (values (intmap-add! out label cont) substs analysis))))
|
|
|
|
;; Because of the renumber pass, the labels are numbered in reverse
|
|
;; post-order, so the intmap-fold will visit definitions before
|
|
;; uses.
|
|
(let* ((effects (synthesize-definition-effects (compute-effects conts)))
|
|
(clobbers (compute-clobber-map effects))
|
|
(succs (compute-successors conts kfun))
|
|
(preds (invert-graph succs))
|
|
(avail (compute-available-expressions succs kfun clobbers))
|
|
(truthy-labels (compute-truthy-expressions conts kfun)))
|
|
(call-with-values
|
|
(lambda ()
|
|
(intmap-fold visit-label conts out substs
|
|
(make-analysis effects clobbers preds avail truthy-labels)))
|
|
(lambda (out substs analysis)
|
|
(values out substs)))))
|
|
|
|
(define (fold-renumbered-functions f conts . seeds)
|
|
;; Precondition: CONTS has been renumbered, and therefore functions
|
|
;; contained within it are topologically sorted, and the conts of each
|
|
;; function's body are numbered sequentially after the function's
|
|
;; $kfun.
|
|
(define (next-function-body kfun)
|
|
(match (intmap-ref conts kfun (lambda (_) #f))
|
|
(#f #f)
|
|
((and cont ($ $kfun))
|
|
(let lp ((k (1+ kfun)) (body (intmap-add! empty-intmap kfun cont)))
|
|
(match (intmap-ref conts k (lambda (_) #f))
|
|
((or #f ($ $kfun))
|
|
(persistent-intmap body))
|
|
(cont
|
|
(lp (1+ k) (intmap-add! body k cont))))))))
|
|
|
|
(let fold ((kfun 0) (seeds seeds))
|
|
(match (next-function-body kfun)
|
|
(#f (apply values seeds))
|
|
(conts
|
|
(call-with-values (lambda () (apply f kfun conts seeds))
|
|
(lambda seeds
|
|
(fold (1+ (intmap-prev conts)) seeds)))))))
|
|
|
|
(define (eliminate-common-subexpressions conts)
|
|
(let ((conts (renumber conts 0)))
|
|
(persistent-intmap
|
|
(fold-renumbered-functions eliminate-common-subexpressions-in-fun
|
|
conts empty-intmap empty-intmap))))
|